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1. Introduction 

The consequence of the COVID-19 epidemic, previously observed by Chinese people only, has now 
become a matter of serious concern for the whole world. In late January – 2020, the epidemic was 
proclaimed public healthcare emergency of international significance, and ultimately on March 11, 2020, 
the World Health Organization has declared COVID-19 as a pandemic [1][2]. The mortality rate is 
growing alarmingly worldwide, requiring an emergency alert solution, and avoiding the accelerated 
dissemination of this pandemic. COVID-19 pandemic [3] could be severe because of its seriousness and 
high transmissibility. The healthcare system in many nations has reached the failure point because of 
the high and growing increasing rate of COVID-19 cases [1]. The impact on the healthcare sector is 
still high because of the large number of patients requiring long-term ICU treatment and automatic 
ventilators [4]. Already there are shortages of test kits and ventilators. Most countries had announced 
[1] full lockdown and have told their citizens to remain indoors and to be rigid to prevent gatherings.  

Since the appropriate and rapid mass distribution of perfectly working vaccines is still difficult for 
various reasons, the global situation has been appalling to billions of people [5][6]. Among COVID-19 
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 COVID-19 is a devastating pandemic in the history of humankind. It is a 
highly contagious flu that can spread from human to human. For being so 
contagious, detecting patients with it and isolating them has become the 
primary concern for healthcare professionals. However, identifying 
COVID-19 patients with a Polymerase chain reaction (PCR) test can 
sometimes be problematic and time-consuming. Therefore, detecting 
patients with this virus from X-ray chest images can be a perfect alternative 
to the de-facto standard PCR test. This article aims at providing such a 
decision support system that can detect COVID-19 patients with the help 
of X-ray images. To do that, a novel convolutional neural network (CNN) 
based architecture, namely ModCOVNN, has been introduced. To 
determine whether the proposed model works with good efficiency, two 
CNN-based architectures – VGG16 and VGG19 have been developed for 
the detection task. The experimental results of this study have proved that 
the proposed architecture has outperformed the other two models with 
98.08% accuracy, 98.14% precision, and 98.4% recall. This result indicates 
that proper detection of COVID-19 patients with the help of X-ray images 
of the chest is possible using machine learning methods with high accuracy. 
This type of data-driven system can help us to overcome the current 
appalling situation throughout the world.   
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cases, symptoms occurring from nasal sore, septic shock, dry cough and fever, failure of multi-organ, 
extreme pneumonia, death [7][8], all are observed. Pneumonia is an illness that induces inflammation 
predominantly in the air cells of the lung, which is responsible for transferring oxygen [8]. The disorder 
of the respiratory system can be caused by COVID-19 [9]. The pulmonary system is the portion of the 
human organism that is the most infected by the virus, and therefore the use of chest X-rays could be a 
more effective approach to detect whether a patient is affected by COVID-19 or not than thermal 
scanning [10]. Another challenging aspect of the health care system is that the individuals infected with 
COVID-19 [11] could have transmitted this disease without any symptoms. 

In this situation, an effective prognosis is essential for timely treatment to minimize huge potential 
pressure in the health sector. Therefore, it is also of particular significance that the prognosis of the 
suspicious patient is tested to promote the next phase for the affected individuals. Early detection of 
such individuals can also prevent more people from being affected. Moreover, there appears to be a 
significant lack of costly test kits due to infected people's exponential development [12]. Hence, X-rays 
can be alternative to detect patients with COVID-19. It can also play a key factor in detecting the 
COVID-19 virus with its low cost and rapid speed with its wide variety of applications [13]. Based on 
these newly emerged circumstances, this study has aimed at designing an efficient machine learning 
system that can screen out COVID-19 patients. Because of the increasingly growing COVID-19 positive 
cases worldwide, most countries face a lack of kits and equipment. The minimal amount of test kits and 
a growing number of everyday cases motivated us to create something which can easily detect whether a 
patient is COVID-19 positive or not. In this article, we introduce a model using machine learning that 
can help detect COVID-19 without using any test kit. To meet our desired goal, we have also compared 
our results with other state-of-the-art works. Our designed model has demonstrated very promising 
results. 

The latest literature has inspired the applied methods of this study on recognizing COVID-19 from 
x-ray images. There are a handful of works that have been done in this field of biomedical image 
classification. In this study [1] to detect the cases of COVID-19, researchers proposed an Xception-
based model naming CoroNet. For that, they used two datasets which worked extremely well on both. 
The model has achieved a detection rate of COVID-19 respectively 99%, 94.59%, and 89.5% for binary 
class, 3-classes, and 4-classes for a chest X-ray dataset. To detect COVID-19 from X-ray images, Wang 
and Wong [14] proposed a model named COVID-Net, which belongs to a deep residual architecture. 
This model is one of the earliest experiments on COVID-19 that utilized deep neural networks to 
categorize four classes of X-ray images. Considering the chest X-ray images, a VGG19 model with 
transfer learning was used in another work [15] where the researchers were able to obtain an accuracy of 
98.75% and 93.48% for three and two-class classification tasks, respectively. 

One such experiment was done in another study [16] where three different CNN models 
InceptionV3, InceptionResNetV2, and ResNet50 were used, respectively. Among them, 98%, which is 
the best accuracy has been achieved by ResNet50 for two-class classification. As any cases of pneumonia 
had not been included in their experiments, it is unclear how well their system could differentiate cases 
among other pneumonia-affected instances and COVID-19. To detect COVID-19 cases from X-ray 
images, a DarkNet architecture based on CNN was proposed in another study [17]. They had achieved 
an accuracy of 87.02% for the three-class classification challenge and 98.08% for the binary classification 
challenge. Xu et al. [18] and Stephen et al. [19] have used various deep learning methods for the 
automatic COVID-19 and pneumonia diagnosis task, while Sethy and Behera [20] implemented SVM 
and ResNet50, an architecture of CNN, to build their model for the recognition purpose of COVID-19. 
Moreover, their proposed technique reached a 95.38% accuracy considering a two-class problem. 
COVIDX-Net was proposed [21] for recognizing COVID-19 by examining X-rays. In their study, the 
number of images for COVID-19 positive was 25, where the number of healthy images was also 25. 
Using these images, they attain an accuracy of 90%. A detection rate of 96% is recorded by Li et al. [22] 
for a model COVNet designed, which could detect COVID-19 to extract visual properties from chest 
CT-images. 



ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 127 
 Vol. 7, No. 2, July 2021, pp. 125-136 

 

 Reza et al. (ModCOVNN: a convolutional neural network approach in COVID-19 prognosis) 

Butt et al. [23] introduced two independent models of classification to differentiate between COVID-
19 images, with a gross accuracy of 86%. A ResNet23 based network was used for their first model, 
while the 2nd one was designed based on the structure of the first network where the fully connected 
layer was concatenating with the mechanism of location-attention for improving the overall accuracy 
rate. Brunese et al. [24] used 6,523 chest X-rays images for experimental analysis from different 
institutions. Detecting COVID-19 by their recommended model, it reached an accuracy equal to 97%. 
Their proposed model consisted of three phases: firstly, to detect the presence or absence of pneumonia 
in a chest X-ray, secondly to differentiate between COVID-19 and pneumonia, and the final move was 
directed at localizing the areas of COVID-19 presence symptoms involvement in the X-ray. This 
scientific base has led us to use a convolutional neural network approach for COVID-19 prognosis from 
chest x-ray images. 

In the following sections of this article, the methods of this study have been presented. After that, 
the obtained results with appropriate discussion have been described. Finally, future works with 
concluding remarks have been discussed. 

2. Method 

This study classified chest X-ray images into three classes – COVID-19, normal, and pneumonia. 
For the classification task, a novel convolutional neural network (CNN) – based architecture namely 
ModCOVNN, has been introduced. Additionally, two convolutional neural network-based architectures 
– VGG16, and VGG19 have been used for biomedical image classification challenges for comparative 
analysis purposes. In this section, the used methodologies, including our proposed methodology, have 
been described. 

2.1. CNN layers 

Any artificial neural network that contains at least one convolutional layer is known as a convolutional 
neural network. Unlike other feature-wise tabular datasets, images are subject to have contextual 
information. The features corresponding to the images are not structured. Just using the pixel values of 
images as the input of a machine learning model does not produce expected performances. Therefore, 
the features from the images are needed to be extracted properly. Handcrafted features can also be 
generated from the images, but that is a very tedious job. Convolutional neural networks come to aid in 
this matter. These neural networks extract features from the images and classify those features into the 
desired classes as well. 

The convolutional layer is the centerpiece of a CNN. It is the main part of the feature extraction 
process within the network. The other layers of a CNN revolve around the convolutional layers. The 
convolution process starts with several randomly initialized filters with a fixed window. Each filter slides 
over a matrix representation of an image and calculates scalar multiplication with the portion of the 
image the window overlaps. The values of each scalar multiplication are stored in another matrix which 
is a transformed matrix representation of the original input of a convolutional layer. In this way, the 
matrix representation of an image gets convolved into more understandable features. Each filter produces 
a transformed matrix. If a single matrix passes through a convolutional layer with n filters, there will be 
n transformed matrices. Let 𝐴 be a sliced 𝑚 × 𝑛 matrix from the input image. It is the 𝑥th row-wise 
slice and the 𝑦th column-wise slice from the original pixilated image. Assume that a filter is an 𝑚 × 𝑛 
matrix denoted by 𝐹 and the transformed matrix is denoted by 𝑇. Note that, usually, a filter is a square 
matrix i.e., 𝑚 = 𝑛, and both 𝐴 and 𝐹 matrix must be of the same dimension. Now, each entry of the 
transformed matrix 𝑇 will be filled with the dot product between 𝐴 and 𝐹 using the following formula, 

𝑇[𝑥][𝑦] = ∑ ∑ 𝐴[𝑖][𝑗] ∗ 𝐹[𝑖][𝑗]𝑛
𝑗=0

𝑚
𝑖=0   () 

Now, if the convolving continues and the dimension of the matrix is not reduced, the feature space 
becomes very large and unmanageable. Therefore, the dimension of a matrix should be reduced regularly 
in a meaningful way. Pooling layers help to reduce the dimension of a matrix in a sophisticated way. 
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After every single or couple or three or more convolutional layers, a pooling layer is added. Pool size is 
defined, and that slider slides over the convolved matrix. While sliding, each pool's maximum or average 
is calculated and stored in a new matrix. In this way, the dimension of a matrix is reduced. Suppose 𝐴 
with dimension 𝑝 × 𝑝 is the 𝑥th row-wise pool and the 𝑦th column-wise pool from the input matrix. 
Let 𝑅 be the reduced matrix after pooling; then the reduced matrix will be calculated with either 
equation (2) for max-pooling or equation (3) for average pooling. 

𝑅[𝑥][𝑦] = max(𝐴)  () 

𝑅[𝑥][𝑦] =
∑ ∑ 𝐴[𝑖][𝑗]

𝑝
𝑗=0

𝑝
𝑖=0

𝑝∗𝑝
  () 

After combining several convolutional layers and the max-pooling layer, the transformed matrices 
are squashed into a 1D vector utilizing a flatten layer when the feature extraction process seems to come 
to a meaningful end. After that, few dense layers are added. The last dense layer, the network's output 
layer, contains the number of neurons equal to the number of classes in a classification task. In this 
study, the number of neurons at the output layer is three – as we are interested in classifying X-rays into 
COVID-19, normal, and pneumonia. We have also used dropout layers in our ModCOVNN. Dropout 
layers have been used in between two fully connected dense layers. A dropout layer allows only a portion 
of the information to be propagated forward from the previous layer. This random selection of 
information to be forwarded helps the trained CNN from overfitting. 

2.2. VGG16 

VGG16 is a model of the deep neural network and transfer learning. In our study, we used the VGG16 
model for the recognition of COVID-19. In 2015, the VGG16 network was introduced and developed 
by Simonyan and Zisserman [25]. Its architecture has been presented in Fig. 1. From Fig. 1, we can see 
that the architecture starts with back-to-back convolutional layers. After that, a max-pooling layer is 
added. Then there are again two back-to-back convolutional layers and a max-pooling layer. After that, 
three convolutional layers are followed by a pooling layer. Again, there are three convolutional layers 
followed by a max-pooling layer that repeats two times. The architecture ends with three dense layers. 
The last of these dense layers is the output layer with three neurons, indicating the three classes of our 
classification task. In total, there are thirteen convolutional layers and three dense layers. If we sum them 
up, the count is sixteen. That is the reason why this network is named VGG16. 

 

Fig. 1.  VGG16 network. 

2.3. VGG19 

Another convolutional neural network that has been used in this study is VGG19. Like VGG16, it is 
also introduced by Simonyan and Zisserman [25] in 2015. It is a slightly deeper network than the 
VGG16. Instead of sixteen layers in VGG16, VGG19 has nineteen layers. Sixteen of them are 
convolutional layers with three additional dense layers. The difference between the two networks lies in 
the repetition of three consecutive convolutional layers followed by a pooling layer.  For VGG16, those 
three blocks of three convolutional layers with a pooling layer have been replaced by four convolutional 
layers with a pooling layer. The rest of the network is identical to the VGG16 network. 
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2.4. ModCOVNN 

This study also introduced a CNN-based architecture – ModCOVNN to classify the X-rays into 
COVID-19, normal, and pneumonia. It is a less deep architecture than VGG16 and VGG19. As opposed 
to sixteen and nineteen layers in VGG16 and VGG19, this network has nine layers. The block diagram 
of this architecture has been presented in Fig. 2. In this model, at first, there are two convolution layers 
with 32 filters. Each filter has a dimension of 3×3. Then comes the max-pooling layer with a stride of 
2×2. Again, comes one convolution layer with 64 filters. The filters of this layer have a dimension of 
3×3. Then, a max-pooling layer with stride 2×2 is added. After that, comes one convolution layer with 
the number of filters 128. Similar to the previous convolutional layers, the filters of this layer also have 
a dimension of 3×3. After that, a max-pooling layer with stride 2×2 is added. This combination of the 
max-pooling layer after a convolutional layer has been repeated four times. The process of feature 
extraction ends with a flatten layer. After that, there comes dense → dropout → dense → dropout → 
dense layers. The last dense layer has acted as the output layer that has three neurons. 

 

Fig. 2.  Proposed ModCOVNN network. 

2.5. Activation functions 

In every convolutional and MaxPooling layer was used the rectifier linear unit (ReLU) activation 
function. A ReLU activation inspects whether the result is negative or positive. It transforms the 
negative values to zero and stores them in the transformed matrix to reduce instability in a Convnet. It 
also stores the positive values as-is in the output matrix. In the output layer of the three architectures 
of this study was used the SoftMax activation. A SoftMax function activates the neuron that has the 
highest probability in the output layer and classifies the input image to the class corresponding to that 
neuron. It transforms the inputs of each neuron to some probability values. The neuron with the highest 
probability gets selected as the predicted class. 

2.6. Experimental Setup 

In this study, three CNN-based machine learning models have been trained. The three models are 
VGG16, VGG19, and our proposed ModCOVNN. We have not used the pre-trained weights of VGG16 
and VGG19. Instead, all three models have been trained from scratch. Due to the lack of computational 
horsepower, we have not used any graphical performance unit (GPU) to train the deep learning models. 
We have used the Keras library on top of TensorFlow for creating deep learning models. All machine 
learning models have been trained with a computer with a Core (TM) – i78550U CPU, 8GB ram, and 
a Windows 10 operating system. 
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2.7. Dataset 

We have collected and merged these three types of images from various sources and then created our 
dataset. All these are open source. We tested whether there were any duplicate data in the dataset or 
not. After that, all the duplicate images have been removed. In this way, we have curated a dataset that 
is made up of 8670 chest x-rays. There are 1089 COVID-19 chest x-rays, 4905 normal x-rays, and 2676 
pneumonia x-rays in the dataset. Initially, the dataset has been split into the training and test set. The 
training set contains 6740 images, while the test set has 1930 images distributed in three classes. During 
training, 10% of the training images have been set aside for validation. The class-wise distribution of 
the training, validation and test images is presented in Table 1 as it is seen that the dataset that has been 
used for the experiments is quite imbalanced. The training algorithm of ModCOVNN has been described 
in Fig. 3. 

 The details of the dataset for COVID-19 detection. 

Class No. of training images No. of validation images No. of test images Total 
COVID-19 642 71 376 1089 

Pneumonia 1728 192 756 2676 

Normal 3697 410 798 4905 

Total 6067 673 1930 8670 

 

Algorithm: ModCOVNN training 

1. begin 

2.           resize the images to 224×224 

3.          apply image augmentation techniques 

4.          pass the training images through two convolutional layers 

5.         pass the outputs of last convolutional layer through a max-pooling layers 

6.          for i = 1 to 3 

7.               begin 

8.                           pass the outputs of last layer to a convolutional layer 

9.                        pass the outputs of last layer to a max-pooling layer 

10.               endfor 

11.        add a dropout layer 

12.        vectorize the neurons 

13.        for i = 1 to 2 

14.            begin 

15.                        pass the outputs of last layer to a dense layer 

16.                        pass the outputs of last layer to a dropout layer 

17.             endfor 

18.         pass the outputs of last layer through a dense layer with SoftMax activation 

19. end 

Fig. 3. The training of the model using the ModCOVNN network. 

2.8. Image Data Transformation 

Image data augmentation helps a deep learning model to achieve improved performances. It also 
helps a classifier to generalize well. In this study, different image augmentation strategies have been 
applied. Three transformation techniques have been used for image augmentation. Those are – rotating, 
zooming, and flipping. In Fig. 4, an overview of image data augmentation has been shown.  
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Fig. 4.  Image data augmentation of chest X-ray dataset 

2.9. Optimizers, Loss Function, Input Size, Batch Size, and Evaluation Metrics 

The models have been trained from scratch in the experimentations with the optimizer named Adam 
(Adaptive Moment Estimation). Adam is a stochastic optimization approach that measures parameter-
specific adaptive learning rates. Since the classification task of this study is a multi-class classification 
task, categorical cross-entropy has been used as the loss function. The images that we collected are from 
three different sources. Therefore they have different dimensions. For this reason, before feeding to the 
networks, the images have been resized into a fixed dimension of 224×224. The x-rays have been three-
channeled (red, green, blue), and each pixel's value ranges from 0 to 255; as the neural networks work 
better with the numbers ranging from 0 to 1, the pixel values have been rescaled by dividing them by 
255. Another important hyperparameter is batch size. The performance of a trained model depends on 
batch size. Usually, the models with bigger batch sizes demonstrate better performances than those with 
smaller batch sizes. Nevertheless, the increasing batch size is not always possible for the limitation of 
computational resources. With the setup of this study, a batch size of 64 has been used for the three 
models during training. Each model has been trained for 50 epochs. After the completion of training, 
the trained models have been tested with the holdout test images.  

The performances of the models have been measured based on Precision, Recall, F1-score, and 
Accuracy. Precision is what is positive in the fraction of data points classified as positive. A precision of 
1.0 means that any non-negative (positive) data point classified is positive. It is also known as positive 
predictive value. Precision can be calculated by dividing the number of true positives by the model's total 
number of data points classified positively. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  () 

A measure of completeness is called Recall. It can be calculated by dividing the number of true 
positive data points by the total positive data points. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑃
  () 

The harmonic average of the precision and the Recall is the F1 score. It is defined as follows: 
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𝐹1_𝑠𝑐𝑜𝑟𝑒 =
2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
  () 

And accuracy of a machine learning classification model is a way to calculate how much an algorithm 
correctly classifies a data point out of all the data points. It is the portion of the correctly predicted data 
points to the total input samples. It is defined as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
  () 

Here 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, 𝐹𝑁, 𝑃, and 𝑁 are true positive, true negative, false positive, false negative, the 
total number of positive instances, and the total number of negative instances, respectively. While 
calculating these evaluation metrics, the COVID-19 class has been considered as the positive class.  

3. Results and Discussion 

This study has demonstrated outstanding performances in detecting COVID-19 from X-rays. Our 
proposed ModCOVNN method has shown better performances than the other two implemented 
convolutional neural networks – VGG16 and VGG19. During training, the models' training accuracies 
have been observed. The ModCOVNN model has obtained 98.28% training accuracy. On the other 
hand, VGG16 and VGG19 have gained training accuracies of 97.14% and 97%, respectively.  

The models have been trained for fifty epochs. During training, after each epoch, a model has been 
validated against the validation images. Based on the training and validation of each epoch, the training 
accuracy versus validation accuracy graph has been plotted. Similarly, the training loss vs validation loss 
graph has been plotted. This has been done to observe the stability of the models during training. It is 
important to watch whether the training of a model has been proper or not. In Fig. 5, two graphs 
corresponding to our proposed model have been illustrated. Fig. 5(a) shows the comparison of training 
accuracy with the validation accuracy over the fifty epochs that the model has been trained. It indicates 
that the model has demonstrated good performance on the validation images with respect to training 
images. The upward slope of both training accuracy and validation accuracy indicates the proper training 
of the model. Similarly, Fig. 5(b) depicts the downward trend of training and validation loss, which is a 
positive sign. On the other hand, the increasing validation accuracy, decreasing validation loss over fifty 
epochs also indicate that the trained model is expected to perform well in the testing phase.   

 

(a)  
Training accuracy vs. validation accuracy over the no. of epochs 

 

(b)  
Training loss vs. validation loss over the no. of epochs 

Fig. 5.  ModCOVNN accuracy and loss comparison 

Just like training accuracy, the proposed ModCOVNN has also outperformed VGG16 and VGG19 in 
terms of test accuracy. It has achieved 98% accuracy on the test images. Among the two VGG models, 
the VGG16 model has been better than the VGG19 model in terms of training accuracy. A similar trend 
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in performance has also been observed in these two models in terms of test accuracy. The VGG16 model 
has yielded 96% test accuracy, while VGG19 has yielded a test accuracy of 92%. 

In this study, the main goal has been to screen out the COVID-19 patients from chest X-rays. 
Therefore, we are more interested in the proper recognition of COVID-19 cases. Classifying a chest x-
ray of a COVID-19 patient as COVID-19 is more important than classifying a chest X-ray of a normal 
patient as normal. Another important matter is to consider is the class imbalance in the dataset. The 
COVID-19 class has way fewer number images than the other two classes. In this scenario, the model's 
overall accuracy can be higher, but it can perform poorly in the class where detection is more important. 
To determine whether our proposed model is performing consistently on the most important class, 
precision, recall, and f1-score of the model considering COVID-19 as the positive class have also been 
measured. To do that, a confusion matrix has been constructed first. The rows of the confusion matrix 
denote the ground truth class, and the columns contain the information about the predicted classes by 
ModCOVNN. Then, with the help of that, precision and Recall have been calculated. In Table 2, the 
confusion matrix of the proposed ModCOVNN has been shown. The model has achieved 98.4% recall 
and 98.14% precision. On the other hand, the VGG16 model has achieved 95.83% and 95.41% precision 
and recall, respectively. The VGG19 model has achieved the lowest precision and recall performance 
among the three models trained in this study. It has been able to demonstrate the precision of 92.5% 
and Recall of 91.67%. The f1-scores of the models depend on the models' precision and recall. In the 
f1-score, both precision and Recall are given equal importance. The ModCOVNN has achieved an f1-
score of 98.27%. On the other hand, two VGG models have obtained f1-scores of 95.62% and 92.08%, 
respectively. 

 Confusion matrix for ModCOVNN model 

  Ground truth class 

  Covid Normal Pneumonia 

Predicted class 
Covid 370 4 2 

Normal 5 742 9 

Pneumonia 2 15 781 

 

This study has obtained outstanding performance in detecting COVID-19 from chest X-rays. Our 
proposed model can act as a decision support system for the screening of COVID-19 patients. Such a 
data-driven machine learning model can also help to mitigate the spread of Coronavirus by identifying 
the patients who are contracted with the virus and isolating them. In this study, we have proposed a 
novel convolutional neural network-based architecture that has superior performance to VGG16 and 
VGG19 models in the classification challenge. The reason why our model has worked so well is because 
of its not-so-deep and not so shallow architecture. The proposed ModCOVNN has six convolutional 
layers as opposed to thirteen and sixteen convolutional layers in VGG16 and VGG19 architectures, 
respectively. Not using the VGG16 and VGG19 models pre-trained on the ImageNet dataset might also 
have caused comparatively worse performance than the proposed ModCOVNN. Our proposed model 
has also been better than the other two deep learning models with respect to all of the four evaluation 
metrics that have been used in this study. The models of this study have also been able to tackle the 
imbalance problem of the used dataset. The models have been able to demonstrate good performance in 
the COVID-19 class despite having the lowest number of instances in that class. The proposed 
ModCOVNN has shown better precision and Recall in the COVID-19 class than the other two classes. 
Better performance in the desired class has also increased the reliability of the model's performance in a 
real-world environment. However, a balanced dataset can always help a machine learning model to 
achieve better performance. Adding more X-ray images to the COVID-19 class can improve a model's 
accuracy, precision, and Recall. Another way to handle the class imbalance problem is to use the 
Generative Adversarial Network (GAN). Using GAN, new samples of the minority class can be 
synthesized and can be added to the minority class to reduce the imbalance. 
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This study has also proved that using chest X-ray, proper detection of COVID-19 in a patient is 
possible. Chest X-rays can be used instead of the PCR test and antigen test. Using X-rays can also be 
helpful in the early diagnosis of COVID-19, which can save lives. Although the models generally have 
good performances, there are also a few limitations of this study. Only two of the popular convolutional 
neural network-based architectures (VGG16 and VGG19) have been used for the classification task. 
Other CNN-based architectures like ResNet [27], Inception [28], InceptionResNetV2 [29], Xception 
[30], DenseNet [31], Network in network [32] etc. have not been used. Using those deeper and 
sophisticated architectures could have added another dimension in the detection of COVID-19 from 
chest X-ray images. Other different methods of image classification, like ensemble methods, and hidden 
Markov models, have not been explored for X-ray image classification in this study. 

This study has achieved better performances than many other existing works in this domain of 
recognizing COVID-19 from chest X-rays. In Table 3, the performance of this study has been compared 
with three other existing works. From Table 3, it is apparent that the proposed ModCOVNN has a 
better result than others with 98.08% test accuracy. In comparison, the other works have not been able 
to cross the 97% test accuracy mark. Among those three, the best performance achieving work has been 
done by I. D. Apostolopoulos and T. A. Mpesiana [15] with 96.78%. The other two have test accuracies 
of 89.60% [1] and 95% [26], respectively.  

 Performance comparison of this study with other notable works 

Works Methods Dataset Test Accuracy 

A. I. Khan et al. [1] CoroNet (based on 
Xception CNN 

architecture) 

1251 (Normal: 310, Pneumonia : 657,  
Covid : 284) 

 
89.60% 

I. D. Apostolopoulos and T. A. 
Mpesiana [15] 

VGG-19 (model with 
transfer learning) 

1442 (Normal: 504 
Pneumonia: 714 

Covid: 224) 

96.78% 
 

A. Waheed [26] CovidGAN 1124 (Normal: 721 
Covid: 403) 

95% 

This study Proposed method 

(ModCOVNN) 

8760 (COVID-19: 1089, Pneumonia: 2676, 

normal: 4905) 

98.08% 

4. Conclusion 

In this study, we have proposed a novel method to detect COVID-19 from chest X-rays. We have 
conducted the experiments in three phases. First, two popular CNN models have been used for image 
classification. After that, a new CNN-based architecture ModCOVNN has been introduced for COVID-
19 detection. Finally, a comparative analysis of three models has been conducted to determine which 
model is more reliable in the described domain-specific task. The analysis shows that our proposed 
architecture has better performance amongst three trained machine learning models. Giving light to the 
limitations of this study, new works can be proposed to handle the scarcity of COVID-19 chest X-rays. 
Other techniques can be applied to increase the model performance and obtain a better decision support 
system to recognize COVID-19 in a patient. Another area worth exploring in this field of biomedical 
image classification is to work to increase the explainability and interpretability of deep learning models. 
How a deep learning model decides a given input can be confusing to the general stakeholders. Works 
addressing this issue would surely make deep learning models more usable and acceptable in various 
domain-specific tasks. However, this study has proven that our proposed ModCOVNN can be used in a 
reliable manner to screen out the COVID-19 patients easily.  
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